Rates

We have shown how, by splitting the follow-up period into small enough
bands, the importance of arbitrary assumptions about when the losses oc-
cur can be minimized. We now follow this argument to its logical conclusion
and divide the follow-up into infinitely small time bands.

5.1 The probability rate

As the bands get shorter, the conditional probability that a subject fails
during any one band gets smaller. When a band shrinks towards a single
moment of time, the conditional probability of failure during the band
shrinks towards zero, but the conditional probability of failure per unit
time converges to a quantity called the probability rate- This quantity is
sometimes called the instantaneous probability rate to emphasize the fact
that it refers to a moment in time. Other names are hazard rate and force
of mortality. :

The probability rate refers to an individual subject. This is counter-
intuitive to many epidemiologists, who think of a rate as an empirical
summary of the frequency of failures in a group observed over time. We
show in the next section that such a summary is, in fact, the most likely
value of the common probability rate for the subjects in the group. It
is general practice in epidemiology to refer to both the probability rate
and its estimated value as the rate, even though this leads to many logical
absurdities. We have tried to keep as close as possible to this tradition,
while avoiding the logical contradictions, by referring to the probability
rate as the rate parameter and its estimated value as the observed rate.

5.2 Estimating the rate parameter

wven though the rate parameter refers to a single individual it is not pos-
sible to estimate its value from the experience of that individual. The
estimate must be based on the experience of a group of subjects assumed
to have the same rate. Similarly, even though the rate parameter refers to
a single moment of time, its estimated value is usually based on a period of
follow-up over which the rate is assumed to be constant. The estimated rate
for this period then refers to the constant value which the rate parameter

o
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Fig. 5.1. The follow-up experience of 7 subjects.

takes at all time points during the period.

The rate parameter over a follow-up period is estimated by dividing the
period into a number of small time bands of equal length and estimating
the common probability of failure for each of the bands. This is divided
by the length of a band to get the rate per unit time. The process is
illustrated using the follow-up experience of 7 subjects shown in Fig. 5.1,
in which the follow-up experience of the subjects is shown as lines which
end when follow-up ends. The lines for those subjects who fail end with a e,
while those whose observation time is censored end with a short bar. The
follow-up period has been divided into 10 short bands and for the present
we shall assume that follow-up always stops at the end of a short band.
From the figure we see that the follow-up of subject 1 stops after 7 bands
due to censoring. For subject 6 the follow-up stops after 5 bands when the
subject fails, and so on.

Exercise 5.1. How many observations of one subject through one time band
are observed? How many of these ended in failure?

Assuming that the rate parameter is constant over the follow-up period, the
conditional probability of failure is the same for all bands and its most likely
value is 2/36. The most likely value of the corresponding rate parameter is
2/36 divided by the length of the bands. Suppose for illustration that each
band has length 0.05 years. The most likely value of the rate parameter is
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then

2

- 111 .
(36 x 0.05) per yeat

Note that 36 x 0.05, which equals 1.8 years, is the total observation time
for the 7 subjects.

Now suppose that five times as many bands are used, so that each is
0.01 years in length. The most likely value of the probability of failure for
these bands is 2/180, but the most likely value of the corresponding rate
stays the same because there are now 180 bands of length 0.01 years and
180x 0.01 is the same as 36 x 0.05, both being equal to the total observation
time, added over subjects. In general, then, as the bands shrink to zero,
the most likely value of the rate parameter is

Total number of failures
- Total observation time °

Note that assumption that events occur at the end of bands is automatically
true when the bands shrink to zero. This mathematical device of dividing
the time scale into shorter and shorter bands is used frequently in this
book, and we have found_it useful to introduce the term clicks to describe
these very short time bands.

Time can be measured in any convenient units, so that a rate of 1.11 per
year is the same as a rate of 11.1 per 10 years, and so on. The total observa-
tion time added over subjects is known in epidemiology as the person-time
of observation and is most commonly expressed as person-years. Because
of the way they are calculated, estimates of rates are often given the units
per person-year or per 1000 person-years.

The use of the general formula for the estimated value of a rate is now
illustrated using data from a computer simulation of 30 subjects who are
liable to only one disease (the failure) and the follow-up is indefinitely long,
so that eventually all subjects develop the disease. The only variable in
the outcome is how long it takes for the disease to develop, and these times
are shown in Table 5.1.

Exercise 5.2. Using the time interval from the start of the study to the moment
when the last subject develops the disease, find the total observation time for the
30 subjects and hence estimate the rate for this interval. Give your answer per
10® person-years as well.

Exercise 5.3. The previous exercise is rather unrealistic. Real follow-up studies
are of limited duration and not all of the subjects will fail during the study period.
Estimate the rate from a study in which the same subjects are observed only for
the first five years.
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Table 5.1. Time until the disease develops, for 30 subjects

Subject Years Subject Years

1 19.6 16 0.6
2 10.8 17 2.1
3 14.1 18 0.8
4 3.5 19 8.9
5 4.8 20 11.6
6 4.6 21 1.3
7 12.2 22 34
8 14.0 23 15.3
9 3.8 24 8.5
10 12.6 25 21.5
11 12.8 26 8.3
12 121 27 0.4
13 4.7 28 36.5
14 ' 3.2 29 11
15 7.3 30 1.5

5.3 The likelihood for a rate -

The argument of the last section, although leading to the most likely value
of the rate parameter, does not allow us to explore the support for other
values. In this section we shall obtain a formula for the likelihood for a
rate parameter.

Consider a more general example in which D failures are observed for
a total of N clicks of time, each of duration h years, where h is very small
and N is very large. The total observation time in yearsis Y = Nh. Let 7
be the conditional probability of failure during a click. Then the likelihood

for 7 is
(mP1—mN-P.

Let the corresponding rate parameter be A, where, because h is small,
A=m/h.
The likelihood for A follows by replacing 7 by Ah, and is
(AR)P(1 = XR)N-D.
The log likelihood for A is therefore

Dlog()) + Dlog(k) + (N — D)log(1 — Ah).
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To see what happens when time is truly continuous, consider the be-
haviour of this expression as the click duration, h, becomes progressively
shorter. Since the total observation time Y remains unchanged it follows
that the number of clicks, N, must become progressively larger. As h be-

comes smaller and N becomes larger, eventually NV — D becomes nearly the _

same as N, and \h becomes so small that
log(1 — Ah) = —Mh.

(This property of the logarithmic function is discussed in Appendix A.)
Making these substitutions, the log likelihood becomes \ ‘

Dlog()\) + Dlog(h) — NAh.

The term D log(h) does not depend on A and is irrelevant since it cancels
out in log likelihood ratios. Omitting this term and noting that Nh is the
total observation time, Y, we obtain the following simplified expression for
the log likelihood:

Dlog()) — AY.

The corresponding likelihood,
(NP exp(-2Y),

is called the Poisson likelihood after the French mathematician. As we
would expect from the previous section it takes its maximum value when
A=DJ/Y. ,

To illustrate the use of this likelihood, suppose 7 cases are observed and
the total observation time is 500 person-years. Then the log likelihood for
Als

7log(\) — 500\

A graph of the log likelihood ratio versus A is shown in Fig. 5.2. The
maximum value of the log likelihood occurs at

A = 7/500 = 0.014 per person-year.

The supported range for A may be found from the graph by reading off the
values of A at which the log likelihood ratio has reduced to —1.353. In this
case the graph shows that the supported range for X is from 7.0 x 1073 to
24.6 x 10~2 per person-year.

Exercise 5.4. Calculate the value of the log likelihood at A = 0.01, A = 0.014,
and A = 0.02. Using the fact that the log likelihood is at its maximum when
A = 0.014 calculate the log likelihood ratio for A = 0.01 and A = 0.02.
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Fig. 5.2. Log likelihood ratio for .

If we wish to estimate the rate over a restricted period of observation the
argument requires only trivial modification; only the person-clicks falling in
the period of interest contribute information so that D and Y refer to the
number of events and the observation time which occur within the period.

5.4 Cumulative survival probability in terms of the rate

Suppose a subject experiences a constant rate A with no possibility of loss
during the follow-up. The cumulative probability that he or she will survive
a given period of time, T, may be found from A by dividing the period into
N clicks, each of length h, so that T = Nh. The conditional probability
of failure at each click is Ah, so that the probability of surviving N such
clicks is

(1 - RN,

The log of this cumulative survival probability is
Nlog(l — M\h)
and since log(1— Ah) may be replaced by —\h when h is small this becomes

—ANh =-AT.
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The quantity AT is called the cumulative failure rate. With this terminol-
ogy we have the fundamental result that

log(Cumulative survival probability) == —Cumulative failure rate

Applying the antilog function, exp(), to both sides of this relationship yields '

the alternative form:

exp(—Cumulative failure rate)
= exp(—AT).

Cumulative survival probability

Exercise 5.5. Using your estimate of the rate for the 30 subjects shown in
Table 5.1 (Exercise 5.2), calculate the probability of survival for the first 5 years,
and hence the 5-year risk. Compare this with the proportion of subjects observed
to fail in this period (see Exercise 5.3).

An important special case concerns rare events, in which the cumulative
survival is large and the cumulative risk is small. Since log(l — z) =~ —=z
when z is small,

log(Cumulative survival probability) = log(1l — Cumulative risk)
~ —Cumulative risk,

so the cumulative risk and the cumulative failure rate are approximately
equal for rare events.

5.5 Rates that vary with time

We have assumed that the rate parameter is constant over the follow-up
period and this may be unrealistic over an extended follow-up. However,
provided the rate parameter is not changing too quickly, the follow-up pe-
riod can be divided into broad bands during which the rate can be assumed
to be constant. This implies abrupt changes in the rate parameter from
one band to the next, but even such a crude model proves useful in practice
provided the changes are not too large.

Consider the first band and let D! be the number of failures Y the
total observation time and A! the rate parameter. The log likelihood for
Alis

Dllog(\') — A1Y?
- and similarly for further bands. Thus once failures and total observation
time have been partitioned between the time bands estimation of band-
specific rates proceeds as before.

Exercise 5.6. Fig. 5.3 illustrates observation of three subjects across three time
bands, showing the observation time (years) for each subject in each band. What
are the estimated failure rates for each of the bands?
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Fig. 5.3. Survival of three subjects across three time bands.

The relationship between the cumulative survival probability over sev-
eral bands and the band-specific rates is also a simple generalization of our
earlier result. For a time interval which has been divided into three bands
of length T, T2, and T2, during which the rates are X!, A2, and A3, the
log survival probabilities for each band are —A'T?, —\?T2, and —X3T%
respectively. The log of the cumulative survival probability over all three
bands is therefore the sum of these, namely

—NT - X372 - N3T% = —(A'T" + N°T2 + X°T3).

The quantity (AT + 2272 + X3T3) is the cumulative failure rate over the
whole interval. It follows that the relationship

log(Cumulative survival probability) = —Cumulative failure rate

still holds when the rate varies from one band to the next.

The use of this relationship to calculate survival probabilities will be
demonstrated using the data for the survival of women diagnosed with
stage I cancer of the cervix, shown in Chapter 4. The time bands are
one year in length and we shall assume that the rate is constant within a
time band, but can vary between time bands. Since exact times of failure
and loss are not given we shall assume that, on average, each failure con-
tributes 0.5 years to the observation time in the band in which the failure
takes place, and similarly for losses. The total observation time during any

particular year of follow-up is then approximately
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Y (N-D-L)yx1+Dx05+Lx05

N —0.5D —0.5L,

Q

where N is the number alive at the start of the year, D is the number of

deaths, and L is the number of losses during the year. For the first band
N =110, L =5, and D = 5, so the observation time for the first year is

Y~ (110 — 0.5 x 5 — 0.5 x 5) = 105 woman-years

and the estimated rate is 5/105 = 0.0476.
For the second band N.= 100, L = 7, and D = 7, so the observation
time for the second year is .

Y2~ (100 — 0.5 x 7 — 0.5 x 7) = 93 woman-years

and the estimated rate is 7/93 = 0.0753.

Txercise 5.7. Estimate the failure rate for stage I subjects during the third
year.

The estimated cumulative failure rates for each year of the follow-up are
shown in Table 5.2. The column headed ‘cumulative survival probability’
is obtained using the relationship

Cumulative survival probability = exp(—Cumulative failure rate).

A life table constructed in this way is sometimes referred to as a modified

i life table.

Exercise 5.8. Calculate the cvmaulative rate over the last five years only, and
hence the probability that a woman survives for ten years given that she has
survived the first five.

5.6 Rates varying continuously in time

The assumption that the rate parameter is constant over broad bands of
time, but changes abruptly from one band to the next, is widely used,
but an alternative model, useful when exact times of failure and censoring
are known, is to allow the rate parameter to vary from click to click. In
Chapter 4 this kind of model led to the Kaplan—Meier estimate of the
survival curve; when using rates it leads to the estimate known as the
Aalen—Nelson estimate.

Fig. 5.4 shows the data that were used to describe the Kaplan-Meier
estimate in Chapter 4, but the stepped graph now refers to the cumulative

RATES VARYING CONTINUOUSLY IN TIME 49
Table 5.2. Modified life table for stage I women
Cumulative Cumulative
Year Rate rate survival probability
1 0.0476 0.0476 0.9535
2 0.0753 0.1229 0.8844
3 0.0886 0.2115 0.8094
4 0.0451 0.2566 0.7737
5 0.0000 0.2566 0.7737
6 0.0417 0.2983 0.7421
7 0.0800 0.3783 0.6850
8 0.0000 0.3783 0.6850
9 0.0000 0.3783 0.6850
10 0.0513 0.4296 0.6508
Number: 50 49 46
H—Pe—tett——bd—+—bedet—++—+
Time
Cumulative
failure
rate
0.0

Fig. 5.4. Early follow-up of 50 subjects: the Aalen—Nelson estimate.

failure rate, not the cumulative survival probability. During the first of .

these clicks the estimated rate is 0/(50h). Similarly for all clicks which
contain no failure the estimated rate is zero, so there is no addition to the
cumulative rate at any of these points in time. The cumulative rate graph
therefore remains horizontal during these clicks. For a click which contains
a failure the rate is 1/(Nh), where N is the number in the study just before
the click. Because this rate operates for a click of length h, the estimate of
the cumulative rate increases by

1 1
PN

Because the click can be thought of as being instantaneous, the cumulative

ar.
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Fig. 5.5. Cumulative rate using the Aalen-Nelson method.

rate jumps by this amount at the moment of occurrence of the failure. In
our example, the first jump is of size 1/49; the cumulative rate stays at
this value until the click which contains the second failure when it jumps
by a further 1/46, and so on.

The cumulative failure rate estimate may also be expressed as a cumu-
lative survival probability, using the now familiar relationship

Cumulative survival probability = exp(—Cumulative failure rate).

When this is done, the Aalen—Nelson estimate of the relationship of the
cumulative survival probability with time looks very similar to the Kaplan—
Meier estimate. Both have a stepped shape with steps at the times when
failures occur. For most of the follow-up period, the two estimates are very
close because of the approximate relationships,

log(l1-1/N) =~ -1/N
exp(-1/N) =~ 1-1/N

for large N. At the end of the interval N is sometimes small and the two
estimates may differ somewhat.

For reasons to be discussed in Chapter 7, it may be best to plot the
cumulative failure rate and not the survival probability, even though the
former is a little harder to interpret. One fairly clear message from the
plot of cumulative failure rate is how the failure rate varies with time. If
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the failure rate is constant then the cumulative rate will rise linearly with
time; if the rate is increasing the cumulative rate will rise non-linearly,
showing an increase in gradient with time; if the rate decreases with time
the cumulative rate will still rise, but now it will show a decrease in gradient
with time.

The Aalen-Nelson plot of the cumulative rate for the melanoma data,
introduced in Chapter 4, is shown in Fig. 5.5. This plot shows that the
rate is higher during the first 20 months than during the period from 20 to
60 months.

Exercise 5.9. Use the plot in Fig. 5.5 to obtain a rough estimate of the rate
during the first 20 months and during the period from 20 to 60 months

Solutions to the exercises

5.1  The total number of subjects observed through one band is
T+2+44+2+6+5+10= 36,

and 2 of these end in failure.

5.2  The total observation time for the 30 subjects is 140.1 4 121.8 =
261.9 years. The rate is 30/261.9 = 0.1145 per year, or 114.5 per 108
person-years.

5.3 The total observation time is now
5+5+5+35+48+46+5+...+1.5=115.8 years.

The total number of failures is 14 so the rate is 14/115.8 = 0.1209 per year,
or 120.9 per 10% person-years.

5.4  The log likelihood at A = 0.01 is
7log(0.01) — 500 x 0.01 = —37.236.

Similarly the log likelihoods at A = 0.014 and A = 0.02 are —36.881 and
—37.384. The log likelihood ratio at A = 0.01 is

(—37.236) — (—36.881) = —0.3550.

Similarly the log likelihood ratio at A = 0.02 is —0.5032.

5.5 When the rate is 0.1145 per year, the probability of surviving for 5

years is
exp(—0.11452 x 5) = 0.564
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so that the mortality risk is 0.436. The proportion of subjects who failed
in this period was, in fact, 14/30 = 0.467.

5.6  The estimated failure rates for the three bands are 1/13, 0/9, and

1/2 respectively. -

5.7  The approximate person-years observation in year 3 is
Y3 ~8—-05x7-05x7="79

and the estimated rate is 7/79 = 0.0886 per year.

5.8 The cumulative failure rate over the last five years is 0.173 so that
the probability that a woman survives for 10 years given that she has
survived the first 5 years is exp(—0.173) = 0.841.

5.9  The gradient of the first part of the cumulative rate curve, from 0
to 20 months, is roughly 0.28/20 = 0.014 per month, which is the rate over
this period (assumed constant). For the second period, from 20 to 60, the
gradient is roughly (0.48 —0.28)/(60 —20) = 0.005 per month, which is the
rate over the second period (assumed constant).
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